

Année académique 2025 - 2026

Département des Sciences, des Technologies et du Vivant

Master en génie analytique

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

1. Identification de l'Unité d'Enseignement

UE GA511 Chimie analytique			
Ancien Code	TEGA2M11	Caractère	Obligatoire
Nouveau Code	MIGM2110		
Bloc	2M	Quadrimestre(s)	Q1
Crédits ECTS	5 C	Volume horaire	50 h
Coordonnées des responsables et des intervenants dans l'UE	Aurélie SEMOULIN (aurelie.semoulin@helha.be)		
Coefficient de pondération		50	
Cycle et niveau du Cadre Francophone de Certification		master / niveau 7 du CFC	
Langue d'enseignement et d'évaluation		Français	

2. Présentation

Introduction

Cette unité d'enseignement fait partie du bloc 2 du cursus de Master en Génie Analytique. Elle est composée du cours de Méthodes d'analyse spectrale (42 h) et d'une séance de travaux pratiques (8 h).

Contribution au profil d'enseignement (cf. référentiel de compétences)

Cette Unité d'Enseignement contribue au développement des compétences et capacités suivantes :

- Compétence 1 Communiquer, collaborer au sein d'une organisation en vue de la faire évoluer, dans le respect des propriétés intellectuelles et de confidentialité
 - 1.2 Produire ou compléter une communication écrite : rapport scientifique, cahier des charges, log book, procédure, note technique, en français et en anglais
 - 1.4 Maîtriser le langage technique propre au secteur
- Compétence 3 Mettre en oeuvre les méthodes analytiques adéquates de façon à contribuer à la productivité de l'entreprise, la qualité des produits, la sécurité et le respect de l'environnement
 - 3.1 Enumérer et expliquer l'ensemble de la chaîne analytique : du prélèvement de l'échantillon à l'édition des résultats
 - 3.4 Analyser de manière critique les données recueillies
 - 3.5 Qualifier des équipements et valider des méthodes analytiques
 - 3.6 Contrôler l'application des règles et des procédures
- Compétence 5 Utiliser des procédures et des outils propres à la chaîne analytique
 - 5.2 Effectuer des essais, des contrôles, des mesures, des réglages sur la chaîne analytique

Acquis d'apprentissage visés

Au terme de l'unité d'enseignement, l'étudiant(e) devra être capable :

- De décrire les principes qui régissent les méthodes d'analyse spectrale abordées ainsi que les aspects expérimentaux, limitations et performances associés;
- D'utiliser les notions acquises pour la résolution d'exercices ;
- De proposer, sur base des éléments vus au cours, la technique optimale pour permettre la caractérisation d'une espèce chimique donnée;
- D'effectuer un travail de synthèse afin de communiquer les connaissances acquises lors de recherches personnelles ;
- De traiter et interpréter statistiquement des données en appliquant les notions théoriques vues au cours ainsi que dans le cours de Statistiques de leur cursus.

Liens avec d'autres UE

Prérequis pour cette UE : aucun Corequis pour cette UE : aucun

3. Description des activités d'apprentissage

Cette unité d'enseignement comprend l(es) activité(s) d'apprentissage suivante(s) :

TEGA2M11A Méthodes d'analyse spectrale et TP 50 h / 5 C

Contenu

Méthodes analytiques de spectrométrie de masse (MS) - infrarouge (IR) - résonance magnétique nucléaire (RMN) : principe de fonctionnement des appareillages, conditions d'utilisation, performances et exemples d'application.

Exercices : interprétation de spectres et identification de composés organiques et macromoléculaires par combinaison des différentes techniques précitées.

Laboratoire : traitement statistique de données générées par analyse HPLC.

Démarches d'apprentissage

L'activité d'apprentissage fera l'objet d'un cours magistral illustré d'exemples et d'exercices dirigés ainsi que d'un travail en groupe d'approfondissement de la matière.

Dispositifs d'aide à la réussite

Correctif d'exercices mis à disposition sur connectED et proposition d'exercices supplémentaires en préparation de l'examen.

Manuel synthétique de la validation de méthodes disponible sur connectED.

Définission d'objectifs d'apprentissage spécifiques à chaque chapitre du cours, postés sur connectED dès le début du cours.

Sources et références

Principe d'analyse instrumentale par Skoog, West et Holler.

Bibliographie complète disponible sur connectED.

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

Support de cours powerpoint, notes d'exercices et certains corrigés, notes de laboratoire et sources complémentaires disponibles sur connectED.

4. Modalités d'évaluation

Principe

La note de l'UE sera établie sur base d'une moyenne arithmétique pondérée des activités suivantes : Note UE = (EE*0,8)+(TP*0,2)

- EE examen écrit : 80 %. Cet examen écrit sera composé d'une épreuve d'exercices valant pour 50 % de la note et de questions portant sur la théorie valant pour 50 % de la note (moyenne arithmétique entre ces deux parties).
- TP: 20 %. L'évaluation consistera en la rédaction d'un rapport de laboratoire (cette activité est non récupérable en seconde session) dont le délai de remise est de 4 semaines à partir de la date de la manipulation.

Dispositions complémentaires

Si l'étudiant fait une note de présence lors d'une évaluation ou ne se présente pas à une évaluation, la note de PR ou PP sera respectivement attribuée à l'UE et l'étudiant représentera cette partie.

En cas d'absence justifiée (CM ou ML) au laboratoire, une(des) question(s) complémentaire(s) portant sur le laboratoire sera(seront) posée(s) lors de l'examen écrit du cours en session du Q1. La note du laboratoire sera

entièrement définie via l'évaluation de la réponse à cette(ces) question(s).

Au Q3, les épreuves se présenteront sous la même forme qu'au Q1 et feront l'objet des mêmes modalités d'évaluation (excepté le laboratoire non récupérable au Q3).

D'autres modalités d'évaluation peuvent être prévues en fonction du parcours académique de l'étudiant. Celles-ci seront alors consignées dans un contrat didactique spécifique proposé par le responsable de l'UE, validé par la direction ou son délégué et signé par l'étudiant pour accord.

Référence au RGE

En cas de force majeure, une modification éventuelle en cours d'année peut être faite en accord avec le Directeur adjoint de département, et notifiée par écrit aux étudiants. (article 67 du règlement général des études 2025-2026).