

Année académique 2025 - 2026

Département des Sciences, des Technologies et du Vivant

Bachelier en informatique orientation technologie de l'informatique

HELHa Tournai - Frinoise Rue Frinoise 12 7500 TOURNAI

Tél: +32 (0) 69 89 05 60 Fax: +32 (0) 69 89 05 65 Mail: tech.tournai@helha.be

1. Identification de l'Unité d'Enseignement

UE2207 Techniques informatiques 1							
Ancien Code	TEIC2B16	Caractère	Obligatoire				
Nouveau Code	TIIT2160						
Bloc	2B	Quadrimestre(s)	Q2				
Crédits ECTS	4 C	Volume horaire	51 h				
Coordonnées des responsables et des intervenants dans l'UE	Tommaso CASCIO (tommaso.cascio@helha.be)						
Coefficient de pondération		40					
Cycle et niveau du Cadre Francophone de Certification		bachelier / niveau 6 du CFC					
Langue d'enseignement et d'évaluation		Français					

2. Présentation

Introduction

Cette Unité d'Enseignement vise à rendre le bachelier en Informatique capable de gérer des activités ou des projets techniques ou professionnels complexes, maîtriser les processus d'automation et de régulation et de gérer des

systèmes automatisés complexes, en faisant preuve de responsabilité dans la prise de décisions dans des contextes professionnels ou d'études imprévisibles. Ils seront aussi amenés à prendre des responsabilités en matière de développement professionnel individuel et collectif. Conception, réalisation, réglage, programmation.

Contribution au profil d'enseignement (cf. référentiel de compétences)

Cette Unité d'Enseignement contribue au développement des compétences et capacités suivantes :

- Compétence 1 Communiquer et informer
 - 1.4 Utiliser le vocabulaire adéquat
 - 1.5 Présenter des prototypes de solutions et d'applications techniques
- Compétence 2 Collaborer à la conception, à l'amélioration et au développement de projets
 - 2.2 Planifier des activités et évaluer la charge et la durée de travail liées à une tâche
 - 2.3 Analyser une situation donnée sous ses aspects techniques et scientifiques
 - 2.4 Rechercher et utiliser les ressources adéquates
 - 2.5 Proposer des solutions qui tiennent compte des contraintes
- Compétence 3 S'engager dans une démarche de développement professionnel
 - 3.3 Développer une pensée critique
 - 3.4 Travailler tant en autonomie qu'en équipe dans le respect de la structure de l'environnement professionnel
- Compétence 4 S'inscrire dans une démarche de respect des réglementations
 - 4.2 Respecter les normes, les procédures et les codes de bonne pratique
 - 4.3 Respecter les prescrits légaux relatifs au contexte dans lequel s'exerce l'activité (exemple code du bien-être au travail, RGPD, le droit à l'image, licences logiciels ...)

Acquis d'apprentissage visés

Relativement à des sujets de leçon envisagés lors du TEIT2B23INFOA - Electronique appliquée il est attendu que l'étudiant démontre sa capacité à :

- Restituer les schémas généraux de fonctionnement des systèmes électroniques de base rencontrés. Il sera capable d'expliquer le fonctionnement de ces entités ainsi que des composants rencontrés. L'élève sera amené à effectuer

calculs sur ces différents principes généraux.

- Identifier et de décrire le principe de fonctionnement des différents périphériques des ordinateurs.
- Repérer, séparer et décrire les différentes parties d'un schéma complexe et pratique. De montrer ses connaissances sur le

fonctionnement de ces différentes entités fonctionnelles vues depuis la première année.

Relativement à des sujets de leçon envisagés lors du TEIT2B23INFOB - Laboratoire de microélectronique et systèmes embarqués il est attendu que l'étudiant démontre sa capacité à :

- Comprendre l'architecture avancée des contrôleurs RISC.
- Concevoir un algorithme répondant à un cahier de charge.
- Transformer l'algorithme en un programme C pour le contrôleur ATmega328 utilisé dans les cartes de ARDUINO, au moyen

de l'environnement de développement gratuit Arduino IDE.

- Expliquer les différents périphériques intégrés: ports E/S, timers, convertisseurs AN, générateurs PWM, port série, etc.
- Rédiger un rapport de laboratoire.
- Choisir un projet .
- Rechercher de la documentation nécessaire à la réalisation du projet.
- Mettre au point un prototype.

Relativement à des sujets de leçon envisagés lors du TEIT2B23INFOC - Laboratoire d'électronique appliquée, il est attendu

que l'étudiant démontre sa capacité à :

- Utiliser un logiciel de conception électronique assistée par ordinateur.
- Réaliser un circuit électronique fonctionnel (gravure, perçage, soudage, mise au point).
- Rédiger un dossier technique conforme aux consignes imposées.

Liens avec d'autres UE

Prérequis pour cette UE : aucun Corequis pour cette UE : aucun

3. Description des activités d'apprentissage

Cette unité d'enseignement comprend l(es) activité(s) d'apprentissage suivante(s) :

TEIC2B16A Laboratoire de microsystèmes et systèmes embarqués (projet seul 4h) 51 h / 4 C

Les descriptions détaillées des différentes activités d'apprentissage sont reprises dans les fiches descriptives jointes.

4. Modalités d'évaluation

Les 40 points attribués dans cette UE sont répartis entre les différentes activités de la manière suivante :

TEIC2B16A Laboratoire de microsystèmes et systèmes embarqués (projet seul 4h) 40

Les formes d'évaluation et les dispositions complémentaires particulières des différentes activités d'apprentissage sont reprises dans les fiches descriptives jointes.

Dispositions complémentaires relatives à l'UE

La note de cette unité d'enseignement est obtenue en effectuant une moyenne géométrique pondérée des notes finales obtenues lors des évaluations des différentes activités d'apprentissage qui la composent.

D'autres modalités d'évaluation peuvent être prévues en fonction du parcours académique de l'étudiant. Celles-ci seront alors consignées dans un contrat didactique spécifique proposé par le responsable de l'UE, validé par la direction ou son délégué et signé par l'étudiant pour accord.

Référence au RGE

En cas de force majeure, une modification éventuelle en cours d'année peut être faite en accord avec le Directeur adjoint de département, et notifiée par écrit aux étudiants. (article 67 du règlement général des études 2025-2026).

Année académique 2025-2026

Département des Sciences, des Technologies et du Vivant

Bachelier en informatique orientation technologie de l'informatique

HELHa Tournai - Frinoise Rue Frinoise 12 7500 TOURNAI

Tél: +32 (0) 69 89 05 60 Fax: +32 (0) 69 89 05 65 Mail: tech.tournai@helha.be

1. Identification de l'activité d'apprentissage

Laboratoire de microsystèmes et systèmes embarqués (projet seul 4h)							
Ancien Code	24_TEIC2B16A	Caractère	Obligatoire				
Nouveau Code	TIIT2161						
Bloc	2B	Quadrimestre(s)	Q2				
Crédits ECTS	4 C	Volume horaire	51 h				
Coordonnées du Titulaire de l'activité et des intervenants	Tommaso CASCIO (tommaso.cascio@helha.be)						
Coefficient de pondération		40					
Langue d'enseignement et d'évaluation		Français					

2. Présentation

Introduction

Cette Activité d'Apprentissage vise à rendre le bachelier en Informatique capable de comprendre et d'appliquer les concepts fondamentaux de l'Intelligence Artificielle, ainsi que de concevoir et de mettre en œuvre des solutions basées sur des techniques d'apprentissage automatique et d'apprentissage profond. Les étudiants seront confrontés à la complexité des systèmes intelligents et apprendront à mobiliser des méthodes algorithmiques, statistiques et logicielles pour résoudre des problèmes réels. Ils seront également amenés à développer un esprit critique face aux limites, aux biais et aux enjeux éthiques de l'IA, tout en assumant des responsabilités dans la conception et l'intégration de modèles d'IA dans des contextes professionnels imprévisibles.

Objectifs / Acquis d'apprentissage

À l'issue de cette activité, l'étudiant sera capable de :

Expliquer les grands paradigmes et méthodes de l'IA (symbolique, probabiliste, connexionniste). Mettre en œuvre des algorithmes classiques de recherche, de classification et de regroupement.

Concevoir, entraîner et évaluer des modèles de machine learning et de deep learning en Python.

Utiliser des bibliothèques et frameworks spécialisés (scikit-learn, PyTorch/TensorFlow).

Développer un mini-projet intégrant une solution d'IA à un cas concret.

Identifier et discuter les enjeux éthiques, sociaux et légaux liés à l'usage de l'IA.

3. Description des activités d'apprentissage

Contenu

Fondements théoriques de l'IA : recherche d'états, logique, réseaux bayésiens.

Algorithmes de machine learning: supervision, non supervision, validation croisée.

Réseaux de neurones et architectures modernes (CNN, RNN, Transformers).

Utilisation pratique des frameworks IA.

Introduction aux modèles génératifs et applications actuelles (chatbots, vision, recommandation).

Réflexion critique : biais, transparence, législation et IA responsable.

Démarches d'apprentissage

Exposés interactifs illustrés par des exemples concrets.

Travaux pratiques en Python / C++ et manipulation de datasets.

Études de cas réels avec résolution de problèmes.

Réalisation d'un projet de groupe appliquant des techniques d'IA.

Discussions collectives et débats autour des enjeux sociétaux et éthiques.

Dispositifs d'aide à la réussite

Tutorat

Sources et références

Cours et syllabi des blocs antérieurs

Documents et liens mis à disposition sur la plateforme pédagogique

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

Cours et syllabi des blocs antérieurs

Documents et liens mis à disposition sur la plateforme pédagogique

4. Modalités d'évaluation

Principe

Moyenne Géometrique sur Projet X Travaux pratiques notés X Évaluation théorique

Projet final (40%)

En groupe de 2-3 étudiants.

Développement d'une application IA répondant à une problématique définie.

Rapport technique + présentation orale.

Travaux pratiques notés (30%)

Exercices en classe (implémentation d'algorithmes, mini-datasets).

Contrôle de la capacité à utiliser les outils (scikit-learn, PyTorch,..).

Évaluation théorique (30%)

Examen écrit

Vérifie la compréhension des concepts fondamentaux (théorie, définitions, limites).

Pondérations

Q1		Q2		Q3		
	Modalités	%	Modalités	%	Modalités	%
production journalière			Trv	70		
Période d'évaluation			Exe	30	Exe	30

Trv = Travaux, Exe = Examen écrit

La pondération de cette activité d'apprentissage au sein de l'UE dont elle fait partie vaut 40

Dispositions complémentaires

Les critères d'évaluations, les échéances et du total sont expliqués en début de Q2

Un certificat médical entraîne, au cours de la même session, la représentation d'une épreuve similaire (dans la mesure des possibilités d'organisation).

La présence aux activités d'apprentissages (cours) est obligatoire.

La réussite sera prononcée en fin de Q2.

En cas d'échec, la production journalière est conservée, la remédiation en Q3 ne peut donc porter que sur la théorie

Référence au RGE

En cas de force majeure, une modification éventuelle en cours d'année peut être faite en accord avec le Directeur de département, et notifiée par écrit aux étudiants. (article 67 du règlement général des études 2025-2026).