

Année académique 2023 - 2024

Domaine Sciences et technologies

Bachelier en sciences industrielles

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

HELHa Charleroi 185 Grand'Rue 6000 CHARLEROI

Tél: +32 (0) 71 41 94 40 Fax: +32 (0) 71 48 92 29 Mail: tech.charleroi@helha.be

1. Identification de l'Unité d'Enseignement

UE SI121 Mathématiques appliquées							
Code	TESI1B21	Caractère	Obligatoire				
Bloc	1B	Quadrimestre(s)	Q2				
Crédits ECTS	5 C	Volume horaire	72 h				
Coordonnées des responsables et des intervenants dans l'UE	Cristobald de KERCHOVE d'EXAERDE (cristobald.de.kerchove.dexaerde@helha.be) Fabien BUISSERET (fabien.buisseret@helha.be) Jean-Baptiste COULAUD (jean-baptiste.coulaud@helha.be)						
Coefficient de pondération		50					
Cycle et niveau du Cadre Francophone de Certification		bachelier / niveau 6 du CFC					
Langue d'enseignement et d'évaluation		Français					

2. Présentation

Introduction

Cette unité d'enseignement fait partie de la formation commune en sciences de l'ingénieur industriel. Elle a pour but d'analyser de nouveaux concepts en vue de leur utilisation dans diverses domaines issus des études scientifiques : la physique, la mécanique, la chimie, l'électricité et l'algorithmique. Les mots clés sont **rigueur**, **compréhension** et **application**.

Contribution au profil d'enseignement (cf. référentiel de compétences)

Cette Unité d'Enseignement contribue au développement des compétences et capacités suivantes :

- Compétence 1 Communiquer avec les collaborateurs
 - 1.1 Rédiger tout document relatif à une situation ou un problème
 - 1.2 Utiliser des moyens de communication adéquats en fonction du public visé afin de rendre son message univoque.
- Compétence 2 Agir de façon réflexive et autonome, en équipe, en partenariat
 - 2.2 Exercer une démarche réflexive sur des constats, des faits, des situations.
 - 2.3 Utiliser une méthode de travail adéquate et évaluer les résultats obtenus suite aux différentes actions entreprises
 - 2.4 Mobiliser et actualiser ses connaissances et compétences
 - 2.5 Collaborer activement avec d'autres dans un esprit d'ouverture
- Compétence 3 Analyser une situation en suivant une méthode scientifique
 - 3.1 Identifier, traiter et synthétiser les données pertinentes
 - 3.2 Rechercher les ressources nécessaires
 - 3.3 Transposer les résultats des études à la situation traitée
 - 3.4 Effectuer des choix appropriés
- Compétence 5 Utiliser des procédures, des outils spécifiques aux sciences et techniques
 - 5.1 Utiliser le logiciel approprié pour résoudre une tâche spécifique

Acquis d'apprentissage visés

1(*). Lors des séances d'exercices suivant le cours théorique, organisées en petits groupes (4 à 6 étudiants), effectuées sur base

• d'énoncés d'exercices ordonnés et commentés préalablement fournis,

• d'exercices résolus à partir des notes personnelles des étudiants prises au cours et du syllabus,

et lors des évaluations écrites, de manière individuelle, et à partir de la maîtrise préalable des outils mathématiques présentés au cours et notamment la compréhension des propriétés, relations et procédures traduisant les concepts mathématiques, les étudiants devront être capables de

- Fournir une réponse rapide de l'ordre du réflexe (avec automatisme) à des questions dites de « drill » basées sur l'application d'une démarche exposée et exercée au cours et en séances d'exercices réalisés et analysés (exercices commentés et résolus) en petits groupes (4 à 6 étudiants);
- Résoudre des problèmes contextualisés issus du domaine des sciences appliquées en prenant soin de détailler les étapes dans la rédaction et en gardant la rigueur qu'impose le formalisme mathématique. Les étapes principales correspondent à
 - i) une phase de décontextualisation où l'étudiant identifie les données et les principes théoriques qui sont explicitement fournis, absents ou implicites (à rechercher);
 - ii) une phase de méthodologie où il déduit ce à quoi il faut aboutir et explicite ce que l'on peut faire pour y arriver ou l'effectue directement sur les données du problème;
 - iii) une phase de recontextualisation dans laquelle il traduit la solution mathématique pour répondre dans le contexte du problème.
- Répondre avec la même précision et rigueur qu'exige une démonstration mathématique à des questions de raisonnement faisant appel aux concepts mathématiques du cours.
- 2(*). Lors des séances d'exercices suivant le cours théorique, organisées en petits groupes (4 à 6 étudiants), effectuées sur base d'énoncés d'exercices ordonnés et commentés préalablement fournis, exercices résolus à partir des notes personnelles des étudiants prises au cours et du syllabus, les étudiants devront être capables de
 - Rédiger un petit rapport structuré (introduction, résolution, conclusion sur une ou deux pages) dont la qualité repose sur
 - i) le respect du formalisme mathématique et le soin de la présentation ;
 - ii) le découpage justifié et complet de la méthode pour arriver à la solution ;
 - iii) la justesse de la réponse finale.
 - Préparer en collaboration avec l'enseignant la partie sur les questions de « drill » d'une séance d'exercices pour ensuite, y jouer un rôle de tuteur pour amener les groupes d'étudiants à identifier les outils dont ils ont besoin et leur utilisation correcte. Pour accomplir cette tâche, les étudiants tuteurs seront à même de reformuler, synthétiser et questionner la matière travaillée.
- **3. Lors de l'évaluation orale** et sur base d'une liste de questions générales préalablement connues, les étudiants devront être capables de
 - S'exprimer en utilisant le glossaire mathématique adéquat de façon à répondre de manière complète aux questions de la liste:
 - Définir des concepts, donner des propriétés et prouver celles-ci;
 - Illustrer leurs dires par un graphique, un schéma ou un exemple éventuellement tiré des sciences appliquées.
- (*) Les deux premiers items ne sont applicables que pour les séances d'exercices en présentiel. Dans le cas des séances d'exercices en distanciel, un travail en autonomie est à fournir par l'étudiant avant la séance de remédiation. Des solutionnaires sont fournis avant chaque séance de remédiation.
- **4.** A la fin de quadrimestre, par goupe de 4 à 6, les étudiants devront être capables de finaliser un rapport sur un problème de mathématiques appliquées comprenant une partie de programmation. Il s'agira donc de rédiger un rapport structuré (introduction, résolution, conclusion) dont la qualité repose sur
- i) le respect du formalisme mathématique et le soin de la présentation ;
- ii) le découpage justifié et complet de la méthode pour arriver à la solution ;
- iii) la justesse de la réponse finale.

N.B.: Les items précédents (1,2,3) préparent à l'examen écrit qui comporte des questions dites de drill (questions courtes à réponses fermées dont la résolution doit être de l'ordre de l'automatisme), des questions dites ""problème" (question dont la rédaction doit être soignée et structurée avec une solution semi-ouverte) et des questions de théorie (raisonnement et démonstration).

Liens avec d'autres UE

Prérequis pour cette UE : aucun Corequis pour cette UE : aucun

3. Description des activités d'apprentissage

Cette unité d'enseignement comprend l(es) activité(s) d'apprentissage suivante(s) :

TESI1B21A Mathématiques appliquées 72 h / 5 C

Contenu

Chapitre 1 : Équations différentielles

Chapitre 2 : Systèmes d'équations linéaires

Chapitre 3 : Systèmes surdéterminés Chapitre 4 : Fonction à deux variables Chapitre 5 : Intégrales de surfaces

Démarches d'apprentissage

(*) L'apprenant est invité à suivre les cours théoriques qui exposent la matière de chaque semaine. Ensuite, une préparation sous forme d'exercices à résoudre est exigée avant chaque séance d'exercices afin d'amener les apprenants à revenir sur leurs cours et leurs notes. De plus, il est demandé pour les séances d'exercices de jouer au moins une fois le rôle de tuteur auprès des autres étudiants en faisant tous les exercices à l'avance et en participant à une réunion supplémentaire avec un des enseignants de mathématiques.

(*) Une séance se déroule classiquement en suivant ce qui est appelé le "parcours pédagogique". Les étudiants par groupe de quatre à six résolvent les exercices en s'aidant de l'étudiant tuteur, de l'enseignant ou encore de leurs notes de cours. Ils parcourent les exercices de drill, les problèmes et les raisonnements. La dernière demi-heure peut être consacrée à un exercice plus complexe, appelé exercice "étoilé", qui se travaille également en groupe et pour lequel un écrit d'une ou deux pages est rédigé selon le principe du "4C": Comprendre - Concevoir - Calculer - Communiquer.

Un rapport devant répondre à un énoncé de problème de plus grande ampleur devra être réalisé par groupe d'étudiants selon le principe des "4C", et ce pour chaque fin de quadrimestre Q1 et Q2.

La succession de cours théoriques et de séances d'exercices prend forme avec la volonté de conjuguer l'accès aux ressources, le rappel des objectifs du cours et la manière dont les apprenants vont être évalués. Une ressource toute particulière à ce sujet est une liste de questions dites de balisage qui seront reprises lors des évaluations (celles écrites et celle orale). Celle-ci permet d'indiquer ce qui est attendu et la manière avec laquelle la cote est établie.

(*) Ces dispositions ne sont applicables qu'en cas de séances d'exercices en présentiel. Pour les séances d'exercices en distanciel, il n'y a pas de dispositif de tutorat et la rédaction de rapport en groupe est abandonné. En revanche, un travail en autonomie sera encadré avec des solutionnaires et une séance de questions / réponses.

Dispositifs d'aide à la réussite

L'unité d'enseignement faisant partie du bloc 1, elle bénéficie de l'ensemble des mesures proposées dans le projet « boîte à outils pour la réussite » : questions de balisage, tutorat par les pairs, ateliers méthodologiques, remédiations disciplinaires, mini-session en novembre, la disponibilité de l'enseignant titulaire aux cours et sur rendez-vous.

- a) Les listes de balisage citées plus haut
- b) Les heures de remédiation proposées pendant toute l'année par un enseignant qualifié
- c) Une formule de tutorat par les pairs (pour les séances d'exercices en présentiel)
- d) La disponibilité de l'équipe de l'UE aux cours ou en séances et sur rendez-vous
- e) Des séances de remédiation
- f) Des solutionnaires

Sources et références

Néant.

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

- a) Un syllabus
- b) Les feuilles de route indiguant les objectifs et la démarche à suivre pour chaque séance d'exercices
- c) Les interrogations et examens résolus des dernières années
- d) Des figures Geogebra
- e) Le site du cours sur connectED
- f) Des solutionnaires pour les exercices

L'utilisation de Geogebra (www.geogebra.org) est constante dans les cours. De plus une formation au logiciel est organisée en début d'année.

4. Modalités d'évaluation

Principe

La note N est construite à partir de :

E) un examen écrit (en juin) : 50% de la note O) un examen oral (en juin) : 50 % de la note

La formule est N = (0.5 E + 0.5 O) * C

où C

est un coefficient construit à partir de rapports de groupe du quadrimestre et du tutorat assuré par l'étudiant.

La note N peut être récupérée en septembre par un examen écrit E' et un examen oral O' .

Dans ce cas, la formule devient N = 0.5 E' + 0.5 O'.

Attention, si N est strictement inférieure à 10/20 en juin, l'étudiant devra représenter les deux examens (écrit et oral) en septembre sauf si la note de l'oral est supérieure ou égale à 13/20, auquel cas il pourra conserver sa note de l'oral et ne repasser que l'écrit.

Le coefficient C n'est plus pris en compte pour l'établissement de la note lorsque celle-ci est rejouée.

Pondérations

	Q1		Q2		Q3	
	Modalités	%	Modalités	%	Modalités	%
production journalière			Evc			
Période d'évaluation			Exm	100	Exm	100

Evc = Évaluation continue, Exm = Examen mixte

Dispositions complémentaires

Si l'étudiant demande une note de présence ou ne se présente pas à une évaluation, la note PR ou PP respectivement sera alors attribuée à l'UE, et l'étudiant devra représenter les parties pour lesquelles il n'a pas obtenu 10/20.

D'autres modalités d'évaluation peuvent être prévues en fonction du parcours académique de l'étudiant. Celles-ci seront alors consignées dans un contrat didactique spécifique proposé par le responsable de l'UE, validé par la direction ou son délégué et signé par l'étudiant pour accord.

Si les conditions sanitaires l'imposent, le passage en distanciel, en partie voire totalement, apportera des modifications à l'organisation ou à la forme des évaluations.

Référence au RGE

En cas de force majeure, une modification éventuelle en cours d'année peut être faite en accord avec le Directeur de département, et notifiée par écrit aux étudiants. (article 66 du règlement général des études 2023-2024).