

Année académique 2025 - 2026

Département des Sciences, des Technologies et du Vivant

Bachelier en sciences industrielles

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél: +32 (0) 65 40 41 46 Fax: +32 (0) 65 40 41 56 Mail: tech.mons@helha.be

HELHa Charleroi 185 Grand'Rue 6000 CHARLEROI

Tél: +32 (0) 71 41 94 40 Fax: +32 (0) 71 48 92 29 Mail: tech.charleroi@helha.be

1. Identification de l'Unité d'Enseignement

UE SI383 Chimie organique				
Ancien Code	TESI3B83	Caractère	Optionnel	
Nouveau Code	MIBI3830			
Bloc	3B	Quadrimestre(s)	Q1Q2	
Crédits ECTS	8 C	Volume horaire	80 h	
Coordonnées des responsables et des intervenants dans l'UE	Béatrice PIRSON (pirsonb@helha.be)			
Coefficient de pondération		80		
Cycle et niveau du Cadre Francophone de Certification		bachelier / niveau 6 du CFC		
Langue d'enseignement et d'évaluation		Français		

2. Présentation

Introduction

Cette unité d'enseignement fait partie du cursus de Bachelier en Sciences de l'Ingénieur Industriel, Orientation Chimie-

Biochimie (Bloc 3). Elle est composée de deux activités d'apprentissage : Chimie organique (théorie) et Travaux pratiques de Chimie organique.

Cette unité d'enseignement a pour buts

- de favoriser une bonne intégration de l'ingénieur industriel chimiste dans le monde de la chimie organique par la connaissance des grandes réactions de base utilisées en synthèse organique ainsi que de leurs mécanismes et de leurs éventuels aspects stéréochimiques (Chimie organique Partie 1);
- de prendre connaissance des méthodes mises en oeuvre pour la synthèse de médicaments (Chimie organique Partie 2).

Contribution au profil d'enseignement (cf. référentiel de compétences)

Cette Unité d'Enseignement contribue au développement des compétences et capacités suivantes :

- Compétence 2 Agir de façon réflexive et autonome, en équipe, en partenariat
 - 2.1 Organiser son travail de manière à respecter les échéances fixées pour les tâches à réaliser
 - 2.2 Exercer une démarche réflexive sur des constats, des faits, des situations
 - 2.4 Mobiliser et actualiser ses connaissances et compétences
- Compétence 3 Analyser une situation suivant une méthode scientifique
 - 3.2 Rechercher les ressources nécessaires
- Compétence 5 Gérer les ressources techniques dans un cadre budgétaire fixé
 - 5.2 Planifier et organiser des tâches en fonction des priorités et des moyens
- Compétence 7 Oeuvrer au développement durable
 - 7.2 Optimiser la gestion des ressources (eau, matières premières, ...)

Acquis d'apprentissage visés

Se reporter aux fiches descriptives jointes de chacune des activités d'apprentissage.

Liens avec d'autres UE

Prérequis pour cette UE : aucun

Coreguis pour cette UE : aucun

3. Description des activités d'apprentissage

Cette unité d'enseignement comprend l(es) activité(s) d'apprentissage suivante(s) :

TESI3B83A Chimie organique 55 h / 5 C (opt.)
TESI3B83B Travaux pratiques de chimie organique 25 h / 3 C (opt.)

Les descriptions détaillées des différentes activités d'apprentissage sont reprises dans les fiches descriptives jointes.

4. Modalités d'évaluation

Les 80 points attribués dans cette UE sont répartis entre les différentes activités de la manière suivante :

TESI3B83A Chimie organique 50 (opt.)
TESI3B83B Travaux pratiques de chimie organique 30 (opt.)

Les formes d'évaluation et les dispositions complémentaires particulières des différentes activités d'apprentissage sont reprises dans les fiches descriptives jointes.

Dispositions complémentaires relatives à l'UE

La note finale de l'UE "Chimie organique" est obtenue en calculant la moyenne géométrique pondérée :

[(note Ch org^5)*(note TP^3)]^(1/8)

Si le nombre de points cumulés en échecs dans les Activités d'Apprentissage est strictement supérieur à 3, alors la note de l'UE sera la note la plus basse des AA.

Si l'étudiant fait une note de présence lors d'une évaluation ou ne se présente pas à une évaluation, la note de PR ou PP sera alors attribuée à l'UE et l'étudiant représentera cette partie.

En cas d'absences répétées et injustifiées à une activité obligatoire, les sanctions administratives prévues dans le REE seront appliquées.

D'autres modalités d'évaluation peuvent être prévues en fonction du parcours académique de l'étudiant. Celles-ci seront alors consignées dans un contrat didactique.

5. Cohérence pédagogique

Les travaux pratiques de Chimie organique permettent d'illustrer la Partie 1 du cours théorique.

Référence au RGE

En cas de force majeure, une modification éventuelle en cours d'année peut être faite en accord avec le Directeur adjoint de département, et notifiée par écrit aux étudiants. (article 67 du règlement général des études 2025-2026).

Année académique 2025-2026

Département des Sciences, des Technologies et du Vivant

Bachelier en sciences industrielles

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél : +32 (0) 65 40 41 46 Fax : +32 (0) 65 40 41 56 Mail : tech.mons@helha.be

HELHa Charleroi 185 Grand'Rue 6000 CHARLEROI

Tél: +32 (0) 71 41 94 40 Fax: +32 (0) 71 48 92 29 Mail: tech.charleroi@helha.be

1. Identification de l'activité d'apprentissage

Chimie organique				
Ancien Code	9_TESI3B83A	Caractère	Optionnel	
Nouveau Code	MIBI3831			
Bloc	3B	Quadrimestre(s)	Q1Q2	
Crédits ECTS	5 C	Volume horaire	55 h	
Coordonnées du Titulaire de l'activité et des intervenants Béatrice PIRSON (pirsonb@helha.be)				
Coefficient de pondération		50		
Langue d'enseignement et d'évaluation		Français		

2. Présentation

Introduction

Cette activité d'apprentissage est composée d'un cours théorique de Chimie organique. Il aborde dans un premier temps les mécanismes selon lesquels des molécules organiques réagissent entre elles; la seconde partie est consacrée à la Chimie pharmaceutique.

Objectifs / Acquis d'apprentissage

A l'issue de cette activité d'enseignement, les étudiants seront capables d'appréhender les aspects fondamentaux de la chimie organique, c'est-à-dire de ...

pour **Chimie organique Partie 1**:

- mettre en oeuvre un raisonnement de recherche d'informations en mobilisant les savoirs théoriques acquis antérieurement pour aborder de nouveaux apprentissages;
- être conscient des fondements expérimentaux et scientifiques des connaissances;
- classer les composés organiques par famille, et nommer les composés organiques selon la nomenclature officielle IUPAC (conventions internationales). En particulier, les alcanes, les halogénoalcanes, les alcools, les alcènes, les alcynes, les arènes, les éthers, les esters, les acides carboxyliques, les amines, les aldéhydes et les cétones.
- comprendre et prévoir le comportement chimique des composés organiques, famille par famille, grâce à des outils de raisonnement (relations entre la structure des molécules et leur réactivité). En particulier, comparer et classer des molécules dans un ordre croissant d'acidité / dans un ordre croissant de basicité;
- définir les termes scientifiques liés aux notions d'isomérie et de stéréoisomérie (voir item Contenu);
- caractériser la structure des molécules organiques d'un point de vue géométrique par différentes formules en les représentant dans un plan (notion d'isomérie) ainsi que dans l'espace (notion de stéréoisomérie). En particulier, représenter des molécules chirales en projection de Cram et en projection de Fischer;
- déterminer la configuration absolue de molécules chirales;
- comprendre les transformations des molécules au cours de réactions qu'elles sont susceptibles d'engendrer.
- illustrer la notion de mécanisme réactionnel (rupture et formation des liaisons) qui est à la base d'une organisation rationnelle des données expérimentales; en particulier, la réactivité des alcools, des amines, des aldéhydes et des cétones, des organométalliques;
- appliquer les connaissances acquises à des exercices illustrant les concepts théoriques.

Chimie organique Partie 2:

- Connaître les stratégies et les outils mis à profit par les scientifiques pour développer un médicament efficace. En particulier, la synthèse supportée sur phase solide utilisée dans le cadre de la synthèse peptidique et de la synthèse combinatoire, la modélisation moléculaire et les études RSA (relations structure-activité).

3. Description des activités d'apprentissage

Contenu

Partie 1:

Les différents types d'interactions intermoléculaires. Les relations structure-activité appliquées aux caractères acide ou basique des molécules organiques. Isoméries structurale et géométrique plane : isomères cis-trans et E-Z. Stéréoisomérie : configurations, représentations de Newman, conformations, molécule chirale, activité optique, mélange racémique, énantiomères, diastéréoisomères, forme méso, configurations relatives (D/L) et absolues (R/S), projections de Fisher et représentations de Cram.

Etude des réactions de transformation des principales fonctions de la chimie organique (telles que les fonctions alcool, amines, aldéhydes et cétones, organométalliques) et de leurs mécanismes : substitutions nucléophile ordres 1 et 2; élimination (déshydratations inter et intramoléculaire); estérification; substitution électrophile aromatique; addition nucléophile; tautomérie énol-cétone; condensation aldolique.

- <u>Partie 2</u>: Synthèse de biomolécules : découverte et mise au point de médicament, synthèse peptidique, synthèse combinatoire, modélisation moléculaire ("Drug design") et étude des interactions entre un médicament et sa cible; notions de pharmacocinétique.

Démarches d'apprentissage

Exposés théoriques interactifs via la réalisation d'exercices (Partie 1), lectures d'articles et de littérature scientifiques, conférences (via internet), visite d'entreprise.

Dispositifs d'aide à la réussite

Un document explicitant les objectifs généraux du cours, ainsi que les objectifs chapitre par chapitre, est disponible sur la plateforme ConnectED.

Utilisation de modèles moléculaires pour la visualisation dans l'espace des molécules chirales.

Sources et références

Traité de chimie organique, K. Peter C. Vollhardt, Neil E. Schore, 6ème édition, De Boeck 2015. Chimie pharmaceutique, G.L. Patrick, Edition De Boeck 2003.

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

Tous les documents utilisés lors des exposés sont disponibles sur la plateforme ConnectED. Capsules vidéos (Stream).

4. Modalités d'évaluation

Principe

La note finale de l'AA "Chimie organique (Théorie)" est obtenue en calculant la moyenne géométrique pondérée : $((Partie 1)*(Partie 2))^{1/2}$

Partie 1 : Examen écrit (50 % de la note).

Lors de l'évaluation, l'étudiant(e) devra

- identifier le(s) type(s) de réaction(s) au vu des conditions opératoires données (nature des réactifs, catalyseur, concentration, température, ...);
- appliquer le mécanisme des réactions afin d'identifier le produit obtenu au départ des réactifs donnés, en prenant en compte un éventuel aspect stéréochimique;
- énoncer, décrire et expliquer avec le vocabulaire adéquat les mécanismes réactionnels abordés lors des cours magistraux.

Partie 2: Examen oral (50 % de la note).

D'une manière générale, lors de l'évaluation, l'étudiant devra

- énoncer, décrire et expliquer avec le vocabulaire ainsi que le langage scientifique adéquat les principes abordés lors des cours magistraux;
- collecter les informations essentielles du cours de manière à présenter une réponse structurée;
- illustrer par des exemples ou des schémas pertinents les concepts abordés au cours;
- maîtriser le cours dans sa globalité en rapidement aux questions qui lui seront posées.

Pondérations

∩1	IO2	IU3
Q1	Q2	l Q J

	Modalités	%	Modalités	%	Modalités	%
production journalière						
Période d'évaluation	Eve	50	Exo	50	Exe + Exo	100

Eve = Évaluation écrite, Exo = Examen oral, Exe = Examen écrit

La pondération de cette activité d'apprentissage au sein de l'UE dont elle fait partie vaut 50

Dispositions complémentaires

Si l'étudiant fait une note de présence lors d'une évaluation ou ne se présente pas à une évaluation, la note de PR ou PP sera alors attribuée à l'UE et l'étudiant représentera cette partie.

En cas d'absence justifiée (certificat médical), les modalités prévues dans le REE sont applicables.

Au Q3 : les modes d'évaluation sont identiques à celles du Q1 (exame écrit) et du Q2 (examen oral).

Référence au RGE

En cas de force majeure, une modification éventuelle en cours d'année peut être faite en accord avec le Directeur de département, et notifiée par écrit aux étudiants. (article 67 du règlement général des études 2025-2026).

Année académique 2025-2026

Département des Sciences, des Technologies et du Vivant

Bachelier en sciences industrielles

HELHa Campus Mons 159 Chaussée de Binche 7000 MONS

Tél : +32 (0) 65 40 41 46 Fax : +32 (0) 65 40 41 56 Mail : tech.mons@helha.be

HELHa Charleroi 185 Grand'Rue 6000 CHARLEROI

Tél: +32 (0) 71 41 94 40 Fax: +32 (0) 71 48 92 29 Mail: tech.charleroi@helha.be

1. Identification de l'activité d'apprentissage

Travaux pratiques de chimie organique				
Ancien Code	9_TESI3B83B	Caractère	Optionnel	
Nouveau Code	MIBI3832			
Bloc	ЗВ	Quadrimestre(s)	Q1Q2	
Crédits ECTS	3 C	Volume horaire	25 h	
Coordonnées du Titulaire de l'activité et des intervenants	Béatrice PIRSON (pirsonb@helha.be)			
Coefficient de pondération		30		
Langue d'enseignement et d'évaluation		Français		

2. Présentation

Introduction

Cette activité d'apprentissage est conposée des travaux pratiques permettant d'illustrer les concepts théoriques de la Chimie organique.

Objectifs / Acquis d'apprentissage

Au terme des séances de travaux pratiques, l'étudiant sera capable de réaliser seul :

- une synthèse organique en suivant un protocole et en utilisant le matériel adéquat de manière adéquate dans les règles de sécurité et dans le temps imparti;
- les étapes préparatoires et consécutives à la réalisation d'une manipulation, à savoir :
- analyser les fiches de sécurité des produits à utiliser et d'en tirer les informations essentielles pour l'utilisation et l'élimination de ceux-ci;
- analyser un protocole : déterminer les étapes de synthèse, quenching, extraction et purification et planifier la manipulation;
- déterminer le rôle de chaque produit utilisé (ex : solvant, réactif limitant,...);
- déterminer le rendement de réaction;
- caractériser le produit obtenu et d'en évaluer la pureté par des techniques telles que le point de fusion, la CCM et l'indice de réfraction.
- éliminer correctement les déchets de manipulations, en suivant le schéma général de tri des déchets.
- De comprendre un protocole rédigé en langue anglaise et de connaître le nom anglais des pièces de verrerie et du matériel usuel de laboratoire de chimie organique.
- De tenir un cahier de laboratoire en suivant les règles de rédaction appliquées en recherche.

3. Description des activités d'apprentissage

Contenu

Réalisation de synthèses organiques mono- et multi-étapes.

Caractérisation des produits de synthèse par points de fusion, CCM, indice de réfractio;, calculs des rendements de réaction,...

Démarches d'apprentissage

Travaux pratiques illustrant les concepts théoriques.

Dispositifs d'aide à la réussite

"Une préparation réfléchie du laboratoire ainsi qu'une participation active de l'étudiant lors des séances de travaux pratiques permettront à ce dernier d'acquérir les compétences pour le test final"

Sources et références

Néant

Supports en ligne

Les supports en ligne et indispensables pour acquérir les compétences requises sont :

L'ensemble des notes de TP sont disponibles sur la plateforme ConnectED.

4. Modalités d'évaluation

Principe

Examen écrit consistant en l'analyse d'un protocole de synthèse organique (en anglais), non réalisé en TP (50% de la note de TP) et la tenue du cahier de laboratoire (50% de la note de TP; non récupérable en 2ème session). Un facteur compris entre 0,9 et 1,1 sera appliqué à la note finale en fonction du comportement général de l'étudiant face au travail en laboratoire.

Le cahier de laboratoire pourra être consulté lors de l'examen écrit; il sera ensuite remis à l'enseignante au terme de cet examen.

La note finale de l'AA "TP de Chimie organique" est obtenue en calculant la moyenne arithmétique pondérée :

(Note Exam écrit + Note Cahier de labo)/2

L'évaluation écrite de l'AA "TP de Chimie organique" aura lieu en dehors de la session de juin.

Pondérations

	Q1		Q2		Q3	
	Modalités	%	Modalités	%	Modalités	%
production journalière			Trv	50	Trv	50
Période d'évaluation			Exe	50	Exe	50

Trv = Travaux, Exe = Examen écrit

La pondération de cette activité d'apprentissage au sein de l'UE dont elle fait partie vaut 30

Dispositions complémentaires

Les principes d'évaluation ci-dessus ont pour motif pédagogique de permettre aux étudiants d'avoir conscience de l'état d'acquisition des compétences attendues.

<u>Au Q3</u> : l'examen écrit (50% de la note) pourra être présenté en 2ème session; par contre, l'évaluation du cahier de labo du Q2 est définitive.

En cas d'absence justifiée (certificat médical), les modalités prévues dans le REE sont applicables.

En cas d'absences répétées et injustifiées à une activité obligatoire, les sanctions administratives prévues dans le REE seront appliquées.

Référence au RGE

En cas de force majeure, une modification éventuelle en cours d'année peut être faite en accord avec le Directeur de département, et notifiée par écrit aux étudiants. (article 67 du règlement général des études 2025-2026).